Shape-selective sieving layers on an oxide catalyst surface.

نویسندگان

  • Christian P Canlas
  • Junling Lu
  • Natalie A Ray
  • Nicolas A Grosso-Giordano
  • Sungsik Lee
  • Jeffrey W Elam
  • Randall E Winans
  • Richard P Van Duyne
  • Peter C Stair
  • Justin M Notestein
چکیده

New porous materials such as zeolites, metal-organic frameworks and mesostructured oxides are of immense practical utility for gas storage, separations and heterogeneous catalysis. Their extended pore structures enable selective uptake of molecules or can modify the product selectivity (regioselectivity or enantioselectivity) of catalyst sites contained within. However, diffusion within pores can be problematic for biomass and fine chemicals, and not all catalyst classes can be readily synthesized with pores of the correct dimensions. Here, we present a novel approach that adds reactant selectivity to existing, non-porous oxide catalysts by first grafting the catalyst particles with single-molecule sacrificial templates, then partially overcoating the catalyst with a second oxide through atomic layer deposition. This technique is used to create sieving layers of Al(2)O(3) (thickness, 0.4-0.7 nm) with 'nanocavities' (<2 nm in diameter) on a TiO(2) photocatalyst. The additional layers result in selectivity (up to 9:1) towards less hindered reactants in otherwise unselective, competitive photocatalytic oxidations and transfer hydrogenations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vanadium oxide supported on mesocellulous silica foams (MCF): An efficient and reusable catalyst for selective oxidation of sulfides

A green, efficient and selective approach for the oxidation of sulfides to sulfoxides and sulfones with UHP at room temperature is reported. The reaction is performed in the presence of vanadia catalyst supported on mesocellular silica foam (MCF) with a V content ranging from 2% to 10% as heterogeneous and reusable catalyst. The structural and textural characterization of this catalyst were don...

متن کامل

Mn (III) salen complex supported on graphene oxide nanosheets as a highly selective and recoverable catalyst for the oxidation of sulfides

In this study, Mn (III) salen complex was synthesized and immobilized onto the graphene oxide, which is modified by 3-chloropropyltrimethoxy silane. Heterogeneous catalyst was characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, fourier transform infrared spectra, nitrogen adsorption−desorption isotherm and atomic absorption spectroscopy. The catalyt...

متن کامل

Shape Selective Alkylation of Biphenyl with 1-octene on ((Al+C3H7Cl)+C2H4) Catalysts

Alkylation of biphenyl with 1-octene was investigated using ((Al+C3H7Cl)+C2H4) catalysts. The catalytic activity of ((Al+C3H7Cl)+C2H4) for the alkylation was studied at different temperatures, mol ratios of biphenyl to 1-octene, reaction times and catalyst concentrations. It was shown that using this catalyst has more advantagous than another catalysts. Experiments show that by increasing t...

متن کامل

The Effect of Ag Particle Shape and Surface Structure on Ethylene Epoxidation Selectivity

Introduction Approaching 100% selectivity in heterogeneous catalytic reactions is an ultimate objective of catalyst discovery and is critical for the design of efficient, environmentally friendly processes. This work focuses on an example where shape controlled synthesis of silver nano-particles has been utilized along with Density Functional Theory (DFT) calculations to design heterogeneous si...

متن کامل

Manganese salophen complex supported on magnetic nanoparticles as an efficient, selective and recyclable catalyst for epoxidation of alkenes

A magnetically recoverable catalyst consisting of Mn (III) salophen complex was prepared. The synthesized catalyst was characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and Fourier transform infrared (FT-IR). The immobilized catalyst was shown to be an ef...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature chemistry

دوره 4 12  شماره 

صفحات  -

تاریخ انتشار 2012